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SUMMARY
The real map from genotype to phenotype is very complex indeed, and yet we use simple models 

to analyse it and simple models to simulate it.  This paper illustrates a method to simulate phenotypes 
as a function of genotypes that aims to better emulate the underlying complexity involved, with multi-
level epistatic interaction among all loci within large groups of loci. It is proposed that such simulated 
data will give a more realistic basis to test QTL detection, GWAS and genetic evaluation methods.

INTRODUCTION
We want to understand and exploit the relationship between genotype and phenotype. To do this 

we use simple models and methods that we hope will lead us to making good decisions. However, 
life is more complex than we can perceive, as it has not been designed, but has evolved in a random 
manner. How can we test the usefulness of these simple models? They might lead to what seems like 
good genetic progress, but do they miss something in the real complexity that alternative models and 
methods might capture for our benefit? In addition, our simple models often lead us to think that there 
are many hundreds of QTL affecting a trait, with relatively few QTL of large effect – could reality be 
that there are far fewer QTL that, because of their complex interactions, masquerade as many hundreds 
of QTL? If this were true and detectable, then we might take a different direction in QTL detection, 
GWAS analyses and genetic evaluations. Simulation can be used to test this. However, datasets that are 
simulated using the same or similar statistical models as will be used to analyse them are self-fulfilling 
and not appropriate. And of course, the real model is too complex for us to know and use. Instead we 
need a tractable approach that emulates the high complexity of true genotype-phenotype relationships, 
including the high-order epistatic interactions that are evident when gazing at a biochemical pathway chart.

The NK model (Kauffman and Levin 1987) is a theoretical fitness model that provides an objec-
tive function relating a sequence (genotype) to fitness score (phenotype). Each locus interacts with 
a given number of other loci that are either neighbours or randomly determined. Each locus is given 
an individual fitness score based on the loci with which it interacts. The individual loci fitness scores 
are summed to give a sequence’s total fitness. This model is useful in that an NK fitness landscape’s 
complexity can be tuned by altering the number of interactions at each locus. Cooper and Podlich 
added an extra layer of interaction to the standard NK model by introducing the concept of environ-
mental dependent gene expression to simulate gene-by-environment interactions (Cooper and Podlich 
2002). Although the 𝑁𝐾 model is useful, it has limitations in representing some biological systems. At 
higher interaction values that are biologically relevant the landscape descends into a chaotic surface 
on which additive adaptation is essentially not possible. 

To solve this problem, Kinghorn and Tanner proposed an approach where the effects of groups 
of interacting loci (“phenotypic contributors”) are added sequentially and in accordance with natural 
selection (Kinghorn and Tanner 2017), similarly to how gene networks probably evolved over time 
(Amoutzias et al. 2004). This approach is based on method for simulating the response surface of 
ligand/target molecule affinity as a function of DNA aptamer sequence (Kinghorn and Tanner 2017). 
We have used a similar approach to model SNP data from many genomes.
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MATERIALS AND METHODS
The Selective Phenome Growth Adapted NK Model (SPANK) method of Kinghorn and Tanner 

(2017) operates on single DNA sequences (DNA Aptamers, typically 30 to 100 bases long). Our 
method follows the SPANK method quite closely, presented here briefly, in our context:

N 	 is the number of QTL
PCi	 is the ith Phenotypic Contributor, this being a vector 

of indicator variables {0,1} that point to loci involved 
in generating value for that PC.  A key concept is 
that the genotypic merit for a haploid is the sum of 
many PCs – many components of genetic merit that 
contribute to expression of phenotype.

𝜑𝑖,s	 is the value of PCi for sequence or haplotype s.
nPC	 is the number of PCs.  This is unbounded.
K	 is the maximum number of loci that can be involved 

in determining a PC.  All levels from 1 to K can be 
involved, but only one level per PC.

ki	 This is the actual number of loci involved in deter-
mining PCi.

There are three main parts to the method:
1.	 Generating the Genotype/Phenotype map (Figures 1, 2).
2.	 Analysing the SPANK Genotype/Phenotype map and 

comparing it to a randomly generated interaction map. To analyse the fitness landscapes we 
find 100,000 local optima and calculate their Hamming distance from the highest scoring 
optimum (Figure 3). The parameters used to drive the method can be changed to arrive at 
what is judged to be an appropriate fitness landscape, as indicated by such analysis.

3.	 For an implementation phase, the adopted Genotype/Phenotype map is used to generate 
phenotypes for the genotypes that are simulated into a real or simulated population.

The method follows Figure 1. A single haploid sequence is generated. This is the current Lead 
Sequence, which will direct the genotype/phenotype map evolution. The phenotypic contributors 
that make up the genotype/phenotype map will be formed around this lead sequence such that the 
lead sequence will be an optimum. To add a new phenotype to the interaction map, ki is uniformly 
sampled from {1 to K}, and ki loci randomly sampled from {1 to N}. The Lead Sequence alleles at 
these loci are used to determine its 𝜑𝑖 value, which is taken from a matrix of previously randomly 
generated 𝜑𝑖 values. For the PCi to be accepted there must be an increase in the average merit across 
all prior PCs. The fitness score of the new phenotype (Σ(1-𝑖)) is then calculated and if it is greater than 
the fitness score of the old phenotype (Σ𝜑(1-(𝑖-1))) then the new PCi is accepted, else it is rejected. 
Finally, noting that the lead sequence does not necessarily have the best genotype for a newly added 
PC, it is adapted using allelic substitution until it is at a fitness peak before the cycle is repeated. This 
allelic substitution proceeds by selecting the fittest 1-step mutant neighbour in sequence space and 
continuing the allelic substitution until no fitter 1-step mutant neighbours can be found.

RESULTS
To make a small illustrative example, the SPANK method was invoked with N=20 loci, nPC=20 

phenotypic contributors, and K= a maximum of 10 loci interacting to generate a PC. The resultant 
epistatic map is shown in Figure 2A. For comparison, an epistatic map was generated with random 
interactions that were not selected using a classical NK model, with 6 interactions per phenotypic 
contributor. In Table 1, a selection of the 20 phenotypic contributors (1, 2, 3 and 20) from the epistatic 

Figure 1. The SPANK method
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map (Figure 2) are shown. The interacting loci and their 𝜑 value for two test sequences are displayed. 
𝜑 values were previously generated constants that are functions of the alleles mapped by the PC. 
The 𝜑 values for each PC are averaged to give the haploid fitness for each of the two sequences.

Our aim is to develop fitness landscapes that are of high order complexity, yet are reasonably 
smooth and not chaotic, to the extent that a practitioner might expect in real populations. The measure 
of landscape smoothness we have chosen is the Hamming distance from the fittest optimum (Figure 
3). For each landscape, 100,000 sequences are chosen at random and from these sequences random 
mutational walks uphill are taken until a local optimum is reached for each starting sequence. The 
Hamming distance from each of these local optima to the fittest recorded optimum is calculated. 
It can be observed that for the SPANK generated fitness landscape (Figure 3A) there is a stronger 
relationship between fitness and distance from the fittest optimum. Additionally, the line of best fit 
shows that for the SPANK generated fitness landscape a greater number of random uphill walkers 
reach the fittest optimum, indicating a smoother landscape. For the random landscape (Figure 3B) 
there is a much weaker trend of having higher scoring optima closer to the fittest optimum. For the 
random landscape just 2709 random walkers reached the fittest optimum, whereas 16,328 random 
walkers reached the fittest optimum for the SPANK landscape.

Figure 2. Epistatic maps generated A) by SPANK 
and B) at random without optimisation. The ran-
dom map is a classical NK model with 6 interactions 
per phenotypic contributor. Each row is a pheno-
typic contributor and each column is a locus. Along 
each phenotypic contributor the interacting loci are 
denoted as dark shaded squares

DISCUSSION
As with the simple models we currently use to detect and exploit genotype-phenotype relationships, 

SPANK is not a model of the underlying biology. However, it does make a big step in the direction 
of emulating the biological complexity involved – permitting the involvement of multiple players 
(multiple loci and alleles) in each contribution of genotype to phenotype.

PC kPC TS Phenotypic contributors (PC) 
or Allele (TS)

𝜑 Table 1. Results from a small illus-
trative example. Using the Epistatic 
map in Figure 2, N is 20 loci and 
nPC is 20. For phenotypic contribu-
tors (PC), 1 denotes a locus involved 
in the PC, else 0.  For the two test 
sequences (TS) shown, 1 and 2 are 
the two alleles at each locus. 𝜑 is the 
value component for the TS under 
the prevailing PC, these being ran-
domly generated constants. 

1 6 01000101011000000001

1 11221212222122111221 f(122221) = 0.7843
2 21221121112211222212 f(111122) = 0.8342

2 9 10000011001011011010

1 11221212222122111221 f(112222112) = 0.9534
2 21221121112211222212 f(221211221) = 0.6934

20 10 10010110000111011100

1 11221212222122111221 f(1221122112) = 0.8133
2 21221121112211222212 f(2212211222) = 0.2643

Haploid Fitness 
(Average of  PC(1-20))

Notice that 
f(122221) = 
0.7843 appears 
twice, by chance

1 11221211222122111221 Fitness = 0.8830

2 21221121112211222212 Fitness = 0.7985
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The functions in the 𝜑 column of Table 1 that allocate value to genotypes are determined by allele 
pattern jointly across loci – for example f(122221) = 0.7843 appears twice in the table, for different 
sets of loci. This departs from what we might model biologically. An alternative would be to require 
specific genotypes over many fixed loci, but this would suffer from such complexes being rare to 
occur and rare to transmit. In conjunction with the selective adaptation steps described, the current 
approach leads to sensible patterns of fitness across genotypes (Figure 3), without eg “witch’s hat” 
peaks of extreme fitness (Kinghorn and Tanner 2017).

For implementation, attention has to be paid to diploidy and its effect on the expression of sin-
gle-locus dominance as well as epistasis. For the latter, it is possible to assume dominance of epistasis 
by stipulating that a PC function is expressed if each locus is represented by either one or two of the 
enabling alleles. In a similar manner we could assume recessive inheritance of epistasis, or a mixture.

In addition, single locus effects need to be addressed. The method proposed can handle that by 
allowing k=1, which is not represented in Table 1, or indeed by using a classic approach to gener-
ate these components. Sampling of k from a Poisson or adapted Gamma distribution might give a 
presumed sensible weighting to the different levels of epistatic interaction, including k=1 for PCs 
involving no interactions. Additive and dominance single-locus effects could be conventionally sim-
ulated separately for each locus, then, for an interaction set involving k loci, the overall effect taken 
as the average across the single locus effects multiplied by the 𝜑 function shown in Table 1. This 
would diversify the single-locus effects from the relatively narrow sampling the method provides, 
and increase diversity of effects for higher-order interacting groups of loci.

Figure 3. Hamming distance to fittest optimum. A) 
SPANK generated landscape B) Randomly generated 
landscape. The number of interacting loci for each land-
scape is matched. There is much superimposition of 
points, especially at the fittest optima (see text)

The SPANK model aims to mimic the complexity of genetic systems not from a top down approach, 
but from a bottom up approach that facilitates the emergence of complex interactions without devolv-
ing into chaos. Having a system that mimics gene interactions, in which the resultant interactions 
are explicitly recorded, we can evaluate the extent to which simple additive models exploit these 
interactions despite no specific fit to accommodate them. Many questions about the impacts of genetic 
interactions and our ability to detect and exploit them could be answered. Can a small number of com-
plex interacting QTL masquerade as a large number of QTL? What number and strength of minimally 
interacting QTL are required to deviate observed causality from major QTL? Where is that missing 
heritability? Future work might be directed towards answering these and other questions regarding 
genetic interactions. This paper has only outlined and illustrated an approach to simulating pheno-
types. If properly applied, the resulting genotype to phenotype map might approach the complexity 
of reality. This in turn could help provide insights to what we might be missing by using relatively 
simple models for QTL detection, GWAS and genetic evaluation.
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