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SUMMARY 

Single step genomic BLUP (SS-GBLUP) for BREEDPLAN beef cattle evaluations is currently 
being tested for implementation across a number of breeds.  A genomic data pipeline has been 
developed to enable efficient analysis of the industry-recorded SNP genotypes for incorporation in 
SS-GBLUP analyses. Complex data collection, along with format and/or naming convention 
inconsistencies challenges efficient data processing. This pipeline includes quality control of 
variable formatted data, and imputation of genotypes, for building the genomic relationship matrix 
required for implementation into single step evaluation. 

 
INTRODUCTION 

Genomic information from high density SNP panels has been incorporated into the Australian 
beef cattle genetic evaluation system, BREEDPLAN, since 2011, by “blending” EBVs from the 
standard analysis with direct genomic values (DGVs) from independent genomic prediction 
analyses using selection index theory. The ultimate goal has been to include all available 
information including pedigrees, phenotypes, and genotypes in a single analysis, known as single 
step genomic BLUP (Legarra et al. 2014).   

One of the major practical challenges for including genomic information in genetic evaluations 
has been the development of scalable data-management systems (Swan et al. 2012) which can 
handle the increasing number of genotypes with increasing density of SNPs (Johnston et al. 2012).  
Quality control of the data becomes increasingly important, as inclusion of genotypes raises 
questions with regards to existing pedigree and potential breed.  This paper describes the data 
pipeline developed for incorporating genomic information into SS-GBLUP analyses for 
BREEDPLAN, from on-farm DNA collection, through data quality control and building the 
genomic relationship matrix (GRM), to implementation within single step evaluation. 

 
INDUSTRY DATA STRUCTURE 

The genomic pipeline from sampling DNA on-farm to genomic evaluation is the most complex 
data recording process involved in genetic evaluation, and is regularly subject to errors. Samples 
are often handled by several people at different points in the pipeline, genotyping can be carried 
out by a number of different research and commercial entities using a variety of platforms, and 
ensuring data consistency has proved difficult.  

Currently, Australian beef cattle genetic evaluations are organised individually by breed 
societies using databases that are maintained by the Agricultural Business Research Institute 
(ABRI) in most cases and using BREEDPLAN evaluation software licenced to ABRI (Graser et 
al. 2005), apart from Angus Australia who maintain their own database.  At the time of writing, 
the role of the Animal Genetics and Breeding Unit (AGBU) within the single step genomic 
pipeline is to collate genotypes from various breed societies and construct a GRM which is used in 
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single step evaluations conducted routinely by ABRI. In future it is intended for the pipeline to be 
incorporated into the recording and processing at breed societies and ABRI for routine SS-GBLUP 
evaluation. 
 
GENOMIC DATA PROCESSING 

The genomic pipeline begins upon receiving raw genotypes from a genotyping lab (Figure 1). 
The DNA sample must be assigned to an animal ID, usually provided by the breed society, either 
by name, society ID, or BREEDPLAN database number. This process has significant issues with 
regards to mismatching of samples to animals, particularly with historic data. Often issues with 
animal identities (e.g. additions/changes to suffix/prefix, duplicate names, etc.) has meant DNA 
samples have been attributed to the wrong animal. Thus far this has been a major hurdle in the 
roll-out of SS-GBLUP, as animals with simple identity changes/errors, which in turn lead to 
pedigree errors, will be rejected from the GRM downstream. Ensuring consistent sample 
identification is critical but not always successful.   

 
Figure 1. Genomic pipeline flow chart 

DATA QUALITY CONTROL 
For quality assurance purposes, raw genotypes should be provided with GenCall (GC) scores 

for each SNP and a SNP map file to ensure consistency across SNP panels. The SNP maps may be 
used for imputation and checking recombination events, and allow the genotypes to be readily 
converted to a consensus 150K wide format genotype. The 150K formats allow consistency across 
all genotypes regardless of panels/chips, and enable high-throughput data management and quality 
control. 

With a consistent format across all genotypes, the data undergoes a quality control (QC) 
analysis, with filters including average GC score, missing SNPs, SNPs with low GC scores, and 
allele frequencies. Animals are removed from the dataset used to construct the GRM based on the 
following criteria:  
- Less than 79% calls with a GC score > 0.6 
- More than 20% missing SNPs on the observed panel 
- Average GC score less than 0.6 
- Sire or dam younger than 550 days (based on recorded pedigree and date of birth) 
- More than 50% SNPs heterozygous  
- Minor and major allele frequencies are higher than 80% or lower than 20% 
- Inconsistency between assigned sex and genotype determined sex 



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:317-320 
 

319 

In each case, where a genotype fails due to poor data quality, the sample/animal is flagged with 
the breed society and/or lab for either re-genotyping the sample or re-sampling if possible. 

A 4K subset of SNPs consistent across all panels is used as a further check for the animal’s 
suitability for the GRM, checking for breed composition, parentage/pedigree, and duplicate 
genotypes (greater than 90% similarity). Currently the GRM is built for purebred animals only, 
and as such only animals with a minimum 80% of a single breed proportion (Boerner 2017) are 
included. At this point, any obvious pedigree errors will be identified and either corrected or the 
animals will be removed from the dataset. Animals failing to meet the required criteria of the data 
QC will be rejected from the GRM dataset, and provided a diagnostic code describing the cause of 
rejection. An example of the number of genotypes removed from a GRM dataset after quality 
control filters are applied is shown in Table 1.  

 
IMPUTATION 

In some instances, multiple genotypes of half-sib families with the same sire are available, 
enabling the sire’s genotype to be imputed. Previous studies have shown that the imputation 
accuracy depends on the SNP density and the number of half-sibs for that sire (Ferdosi et al. 
2014). Although un-genotyped sires with small half-sib families can be imputed, the imputed 
genotype will contain considerable amount of missing markers and the accuracy of imputation will 
be low. For inclusion in the GRM dataset, half-sib families larger than 11 individuals were 
considered for sire imputation, with imputation and haplotyping methods similar to those 
implemented in the “hsphase” algorithm (Ferdosi et al. 2014). The phased offspring are retained in 
a haplotype library for FImpute (Sargolzaei et al. 2014). SNP loci with more than 80% missing 
genotypes across animals are removed, and the missing SNPs are imputed using the haplotype 
library and the corrected pedigree. 

 
Table 1. Number of genotypes removed from a GRM dataset after quality control process 

 
Quality control filter Number of genotypes 

Total  12169 
Less than 79% SNPs with GC score above 0.6 167 
More than 20% SNPs missing 4 
Average GC score less than 0.6 8 
Extreme major/minor allele frequencies (>80% and <20%) 15 
Breed proportion less than 80% 489 
Duplicate genotype and sample id - multiple platforms 730 
Duplicate genotype - different sample id 21 
Duplicate sample id - different genotype 7 
Inconsistent sex (pedigree vs genotype) 82 
Incorrect sire or dam 282 

 
GENOMIC VS PEDIGREE RELATIONSHIP QUALITY CONTROL  

The GRM is built using VanRaden’s method 1 (VanRaden 2008). With the inclusion of 
genomic information, previously unidentified relationships are discovered. These relationships 
may simply be previously unknown or not recorded, or may be an artefact of inbreeding within the 
population. Regardless of the reason, the additional information provided by the GRM to identify 
relationships not seen in the NRM will increase the accuracy of EBVs.  

However, there will also be discrepancies between genomic and pedigree relationships, most 
likely due to incorrect recording; even well recorded herds have a fraction of their calves (3-5%) 
with incorrect pedigree (Johnston et al. 2012). It is possible that the recorded sire of an animal 
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appears ‘disproven’ using genomic information, in which case there are a number of possible 
scenarios. The recorded pedigree may be incorrect, or the genotype sample may be of the wrong 
animal (e.g. sampling mix up, sample identity error, etc.). The issue is knowing which scenario is 
correct. There are a number of actions possible with the information available:  
- Ignore the genotype and continue with the pedigree relationship (i.e. genotype wrong) 
- Use the genotype to fix the pedigree relationship (i.e. pedigree wrong) 
- Remove animal (i.e. uncertain whether pedigree or genotype is correct). 

If the genomic relationship is ignored, a new genotype and/or sample should be requested. If 
the pedigree is corrected based on the genotype, this correction must be performed at the breed 
society level. It is possible that additional genotyping may change the GRM over time, as more 
half-sib relationships become available and new pedigree discrepancies will appear, or animals 
may be re-genotyped. In some instances, duplicate genotypes will occur, whereby the sample ID 
are the same, and the genotypes different; or the genotypes are the same, but the sample IDs are 
different. In these instances, it is difficult to identify which is correct, and as such both genotypes 
are unrecoverable. Table 1 provides an example of the number of genotypes removed from a GRM 
dataset after identifying duplicate samples and pedigree errors.  

There are a number of assumptions in the building of the GRM with respect to using an 
unselected base population with little inbreeding, which can affect the genomic relationships 
(VanRaden 2008). Thus the issue of genomic and pedigree relationship discrepancies remains 
contentious, as the ‘correct’ action is not always obvious. 

 
CONCLUSIONS 

Increasing use of high density genomic information has the potential to improve the accuracy 
of genetic evaluations, and rates of genetic gain in the beef industry.  This must be supported with 
efficient data pipelines which automate the quality control and analysis of genotypic data for 
inclusion into routine genetic evaluations. The genomic pipeline described here aims to do this, 
though difficulties arise due to complex data recording processes, multiple sample/data handling 
points, multiple laboratories, commercial entities and breed societies. Carefully structured and 
consistent data handling among the various participants will enable a smooth transition to 
SS-GBLUP, providing a repeatable, traceable, and auditable process, which is documented to 
ensure the highest quality and to identify changes over time for the Australian beef industry.  
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