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SUMMARY 

High-density (HD) marker genotypes could increase the accuracy of genomic prediction by 

providing stronger linkage disequilibrium (LD) between markers and quantitative trait loci 

affecting a trait, especially in populations with a high genetic diversity such as Australian Merino 

sheep. The aim of this study was to compare the accuracy of genomic prediction for Merino 

yearling and adult wool traits based on observed and imputed 600K single nucleotide 

polymorphism (SNP) marker genotypes with the accuracy based on moderate-density (50K) 

marker genotypes. Genomic best linear unbiased prediction (GBLUP) and a Bayesian approach 

(BayesR) were used as prediction methods. Results showed a small relative increase in accuracy 

between 2 to 15% (of the previous accuracy) when using a HD marker set. The results of BayesR 

were on average similar to GBLUP. Considerably higher (up to 25% relative increase) in 

prediction accuracy was observed for animals with lower genomic relationship to the reference 

population. 

 
INTRODUCTION 

Genomic prediction of selection candidates (Meuwissen, et al. 2001) is becoming more 

practical in animal breeding programs. Genomic prediction is based on genome-wide single 

nucleotide polymorphism (SNP) marker genotypes assumed in LD with quantitative trait loci 

(QTLs) affecting a polygenic trait. Genomic prediction based on denser SNP panels is expected to 

improve the prediction accuracy and hence the selection response compared with using lower-

density markers because of a higher LD between markers and QTLs. Higher marker density could 

be more important in more genetically diverse breeding populations such as Australian Merino 

sheep, in which the effective population size is reported to be large (Kijas et al 2012). The 

objective of this study is to compare the accuracy of genomic prediction between a HD (600K) and 

a moderate-density (50K) SNP marker panel for wool traits in Australian Merino sheep using 

either Genomic Best Linear Unbiased Prediction (GBLUP) or a non-linear Bayesian prediction 

approach. 

 
MATERIALS AND METHODS 

Reference population, phenotypes and validation population. The investigated traits were 

yearling and adult wool quantity and quality traits as summarized in Table 1. The size of the 

reference population for each trait and age group was different, ranging from 2,413 to 4,662 

purebred Merinos. These animals belonged to the Sheep Cooperative Research Centre Information 

Nucleus Flock (INF) and the Sheep Genomics Flock (SGF). The INF consisted of eight flocks 

located across different regions of Australia and these were linked to each other by using common 

sires through artificial insemination between 2007 and 2011 (van der Werf et al. 2010). The SGF 

was a single research flock located in southern New South Wales, Australia with data collection in 

2005 and 2006 (White et al, 2011).  
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The validation population was a group of 175 Merino sires with highly accurate EBVs 

(average accuracy ~ 0.92). Furthermore, the validation population was divided into two sets of 

animals; one with a high genomic relationship to the reference population (mean of top 30 

relationships was greater than 0.20) and one with a low genomic relationship to the reference 

population (maximum genomic relationship was less than 0.10). 

 

Genotypes. Genotypes were available based on the 50K Ovine marker panel (Illumina Inc., 

San Diego, CA, USA). This marker panel provided 48,559 SNP genotypes after applying quality 

control on genotypes. All INF and SGF sires and a number of progeny (1,735 purebred and 

crossbred Merino animals) were genotyped using the 600K (Illumina Inc., San Diego, CA, USA) 

marker panel, which provided 510,174 SNPs after quality control. Using animals with observed 

HD genotypes as an imputation reference set, the rest of Merinos were imputed from 50K to 600K 

using FImpute (Sargolzaei 2014). 

  

Statistical methods. Genomic best linear unbiased prediction (GBLUP) and a BayesR 

approach (Erbe et al. 2012) were used to calculate the Genomic Breeding Values (GBV) using 

ASReml (Gilmour et al. 2009) and BESSiE (Boerner and Tier, 2015), respectively. The following 

model was used for data analysis: y = Xb + Z1g +  Z2m + Z1Qq+e where y is a vector of 

phenotypes, b is a vector with fixed effects, g is the random additive genetic effect of the animal, 

m is a vector with maternal effects, q is a vector of genetic groups and  e is vector of random 

residual effects, X, Z1 and Z2 are incidence matrices. g, m, q and e are considered normally 

distributed as 𝑔 ~ 𝑁(0, 𝐺𝜎𝑔
2), 𝑚 ~ 𝑁(0, 𝐼𝜎𝑚

2 ), 𝑞 ~ 𝑁(0, 𝐼𝜎𝑞
2) and 𝑒 ~𝑁(0, 𝐼𝜎𝑒

2), respectively, 

where G is the genomic relationship matrix calculated based on 50K or 600K genotypes using the 

VanRaden (2008) approach. The fixed effects in the model were birth type, rearing type, gender, 

age at measurement (for weaning weight and post weaning weight) and contemporary group which 

was flock × birth year × management group.  

 

Table 1. Summary statistics and heritability of yearling (Y) and adult (A) wool traits. 

Trait Nr. records Mean s.d Range *h2 

Y1-GFW 4,662 3.64 1.04 1.2 - 7.8 0.57 (0.04) 

Y-CFW 4,423 2.46 0.65 0.93 - 4.76 0.51 (0.05) 

Y-FD 3,969 19.93 5.39 12.8 - 42 0.62 (0.04) 

Y-FDCV 3,554 19.26 2.86 11.7 - 31.8 0.47 (0.04) 

Y-SS 3,554 33.8 9.82 13 - 88 0.55 (0.04) 

Y-SL 3,554 80.93 13.06 38 -236 0.56 (0.04) 

A2-GFW 4,541 5.75 1.97 1.50 - 14.30 0.69 (0.04) 

A-CFW 4,540 4.19 1.39 1.13 -  9.91 0.70 (0.04) 

A-FD 3,001 18.17 1.84 13.80 - 24.60 0.64 (0.05) 

A-FDCV 2,436 18.07 2.56 11.80 - 27.70 0.57 (0.07) 

A-SS 2,414 36.61 10.31 3.00 - 68.00 0.37 (0.07) 

A-SL 2,413 98.57 18.34 41.00 - 149.00 0.67 (0.07) 
1
Y=Yearling, 

2
A=Adult, GFW=Greasy Fleece Weight(Kg), CFW=Clean Fleece Weight(Kg), FD=Fibre Diameter(µ), 

FDCV=Fibre Diameter Coefficient of Variation (%), SS=Staple Strength(Newton/ktex), SL= Staple Length(mm),*: estimated based 
on pedigree 

 

The BayesR method considers a mixture of four normal distributions for the SNP effects with 

variances σ1
  2 = 0, σ2

  2 = 0.0001 σ𝑔
2   ,  σ3

  2 = 0.001σ𝑔
2 ,  σ4

  2 = 0.01σ𝑔
2. Starting values for σ𝑔

2  were taken 

from GBLUP analysis and the priors for the proportion of markers in each distribution was drawn 

from a Dirichlet distribution. 50,000 iterations (with 10,000 burn-in) were run for analysis. The 
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genomic prediction accuracy was assessed based on the Pearson correlation coefficient between 

GBV of the validation sires and their accurate EBV based on progeny test. 

 

RESULTS AND DISCUSSION 

The accuracy of genomic prediction for the two marker panel densities is shown in Tables 2 

and 3 for yearling and adult wool traits, respectively, based on GBLUP and BayesR prediction 

methods. Results showed a slight increase in accuracy for both yearling and adult wool traits based 

on HD genotypes. The relative increase in prediction accuracy was ranging from 2% to 15% with 

an average relative increase of 5.9%. The percentage point of gain in accuracy was between 0.00 

and 0.09 and on average 0.04. BayesR did not show notably higher accuracies than GBLUP based 

on 600K across all yearling and adult wool traits. 

Table 4 shows the change in GBV accuracy for groups of validation sires with high or low 

genetic relationship to the reference population. A considerable increase in accuracy was observed 

across almost all traits for animals with lower genetic relationship to the reference population, 

while the increase in accuracy for highly related animals was small.  

This study showed a small gain in GBV accuracy based on HD genotypes in Merino sheep, 

except for animals with lower genetic relatedness to the reference population in which extra 

accuracy was notable. As Table 3 and 4 show, the genomic prediction of wool traits based a 

moderate-density marker set (50K) is already high (up to 0.68) which is because of a relatively 

high genetic relatedness of validation sires to the reference population. This indicates for highly 

related animals a moderate density marker panel (~50K) could explain most of the additive genetic 

variance of the wool traits used in this study. 

Results showed significantly higher GBV accuracy based on HD genotypes for lowly related 

animals to reference population. Animals with lower relatedness share smaller chromosome 

segments and rely more on higher marker density to achieve sufficient LD for accurate genomic 

prediction.  

 
Table 2.  Accuracy of genomic prediction based on using 50K or 600K marker genotypes in yearling 

wool traits. 

Trait Size 
GBV Accuracy 

GBLUP (50k) GBLUP(600k) Bayes-R(600k) 

Y1-GFW 4,662 0.681 0.692 0.669 

Y-CFW 4,423 0.621 0.634 0.632 

Y-FD 3,969 0.686 0.752 0.718 

Y-FDCV 3,554 0.462 0.469 0.470 

Y-SS 3,554 0.366 0.412 0.369 

Y-SL 3,554 0.594 0.617 0.621 
1
Y=Yearling, GFW=Greasy Fleece Weight(Kg), CFW=Clean Fleece Weight(Kg), FD=Fibre Diameter(µ), FDCV=Fibre 

Diameter Coefficient of Variation (%), SS=Staple Strength(Newton/ktex), SL= Staple Length(mm) 

 

Genotype imputation errors might be a potential reason of limiting gain in GBV accuracy from 

HD genotypes. However the chance of this error should be very low in this study because the HD 

genotyped animals (1,735) were selected based on high genetic relationships to the rest of 

population. Furthermore, our previous results showed high imputation accuracy of low-density 

(12K) to moderate density (50K) genotype if there is a high genetic relatedness between test set 

and imputation reference set (Moghaddar et al. 2015). Imputation of a moderate (50K) to high 

density (600K) is expected to be more accurate than imputation of low to moderate marker 

density.  
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Table 3.  Accuracy of genomic prediction based on using 50K or 600K marker genotypes in adult wool 

traits. 

Trait Size 
GBV Accuracy 

GBLUP (50K) GBLUP(600K) Bayes-R(600K) 

A1-GFW 4,541 0.650 0.691 0.691 

A-CFW 4,540 0.594 0.631 0.626 

A-FD 3,001 0.610 0.673 0.703 

A-FDCV 2,436 0.324 0.366 0.370 

A-SS 2,414 0.590 0.669 0.664 

A-SL 2,413 0.400 0.461 0.464 
1
A=Adult, GFW=Greasy Fleece Weight(Kg), CFW=Clean Fleece Weight(Kg), FD=Fibre Diameter(µ), FDCV=Fibre 

Diameter Coefficient of Variation (%), SS=Staple Strength(Newton/ktex), SL= Staple Length(mm) 

 

Table 4.  GBV accuracy for genetically highly or lowly related animals to reference population 

 

Trait 
50K-Marker Density 600K-Marker Density 

Highly Related Lowly Related Highly Related Lowly Related 

Y-GFW 0.712 0.398 0.721 0.410 

Y-FD 0.667 0.665 0.766 0.754 

Y-SS 0.471 0.226 0.496 0.261 

Y-SL 0.720 0.190 0.733 0.237 

A-GFW 0.712 0.512 0.712 0.608 

A-FD 0.690 0.570 0.735 0.628 

A-SS 0.760 0.548 0.762 0.617 

A-SL 0.573 0.361 0.586 0.452 

GFW=Greasy Fleece Weight(Kg), CFW=Clean Fleece Weight(Kg), FD=Fibre Diameter(µ), FDCV=Fibre Diameter Coefficient 
of Variation (%), SS=Staple Strength(Newton/ktex), SL= Staple Length(mm) 
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