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SUMMARY 

Gene discovery relies on knowledge of animal relatedness. This in turn exploits correlation 

based measures of similarity now based on shared patterns of genome-wide single nucleotide 

polymorphism (SNP) genotypes. These comparisons are captured by the genomic relationship 

matrix (GRM). However, it is not clear whether correlation is the best way of quantifying those 

shared patterns. Here, we continue our exploration of whether one can build relationship matrices 

based on the concept of compression efficiency from Information Theory. Drawing on 4 

commercial broiler lines, 2 lines based on growth and efficiency selected roosters, and 2 lines 

based on reproductive performance selected hens, we found that data compression clustered the 

lines by gender. Further, a sliding window version of the approach identified different gene 

regions apparently selected in male versus female lines. In males two prominent regions harboured 

IGF-1 (Chromosome 1) and a cognate IGF-1 receptor INSR (Chromosome 28). In the female lines, 

the reproductive hormone receptor GNRHR (Chromosome 10) and folate metabolism FOLH1 

(Chromosome 1) were prioritised.  

 

INTRODUCTION 

Gene discovery through genome-wide association studies (GWAS) and identification of 

signatures of selection require that population structure and relatedness can first be quantified and 

subsequently accounted for. Genetic relatedness is currently estimated by a combination of 

traditional pedigree-based approaches (Henderson 1975) and, given the recent availability of 

molecular information, the use of marker genotypes via the genomic relationship matrix (GRM) 

(Van Raden 2008). To date, GRM from SNP genotypes are essentially estimated using correlation. 

Here, we continue our exploration as to whether the concept of compression efficiency from 

Information Theory can provide a complementary method for establishing patterns of genetic 

relatedness. The basic principle of Normalised Compression Distance (NCD) (Cilibrasi and 

Vitanyi 2005) is that if patterns of data in one genotype file can be used to compress shared 

patterns of data in the second genotype file, the two genotypes are considered related. 

Consequently, a short distance (high similarity) will be awarded. This process can be repeated 

across a genotyped population of animals to build a Compression Relationship Matrix (CRM) 

analogous to a GRM. This concept has previously been used by our group in both sheep and cattle 

populations where we have found that the NCD method can sensitively discriminate sire groups, 

breeds and indeed half-sibs from full sibs, in circumstances where GRM could not (Hudson et al. 

2014 WCGALP). Moreover, we found CRM explained more genetic variance, reduced the 

missing heritability and yielded higher phenotype accuracies than GRM (unpublished data). 

Additionally, a preliminary version of the approach was able to cluster individual humans by 

ethnic group in a manner consistent with FST and known phylogeography (Hudson et al. 2014). 

In this exploratory paper we assess the application of NCD to patterns of relatedness between 4 

commercial lines of broiler chickens, Gallus gallus domesticus. We also use a genome-wide 

sliding window based on compression efficiency to identify possible signatures of selection 

present on a gender-specific basis. 
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MATERIALS AND METHODS 
Populations and data resources. We used data from 988 chickens from 4 commercial lines of 

broilers – hereon in denoted as Lines A, B, C and D (Table 1). Individuals were selected from a 

much larger population of over 50,000 birds and based on full sib families to a near-balanced 

design of ~250 individuals per line. 

 

Table 1. Summary of the 4 chicken lines used for this analysis 
 

Line Selection Birds Full-Sib 

Families 

Females Males 

A Female 204 14 167 37 

B Female 244 5 153 91 

C Male 254 18 195 59 

D Male 286 50 220 66 

 

Two of the lines (A and B) are lines that have been generated for selecting genetically superior 

females – the selection focus being primarily on desirable reproductive traits. For male lines (C 

and D), the selection foci have been growth rate, muscle mass and feed efficiency. All animals 

were genotyped for 51,713 SNP (Groenen et al. 2009) distributed genome-wide.   

 

Population clustering. We used NCD to compare pairs of individuals (x and y) from all 4 

lines based on their respective SNP genotypes as follows: 

 

𝑁𝐶𝐷(𝑥, 𝑦) =  
𝑍(𝑥𝑦) − min {𝑍(𝑥), 𝑍(𝑦)}

max {𝑍(𝑥), 𝑍(𝑦)}
 

 

Z(xy) represents the size of the compressed file containing both concatenated SNP genotype 

sequences to be compared and Z(x) and Z(y) is the size of the compressed file with the isolated 

SNP genotypes for x and y, respectively. We used GZIP to perform the data compression. 

 

Signatures of Selection. In order to find signatures of selection and regions of evolutionary 

interest, we next applied a sliding window version of compression efficiency (CE) as previously 

described in Hudson et al. (2014). This approach exploits the sensitive pattern recognition 

capability of CE to find haplotype blocks that occur in one population but not another. In brief, the 

population level CE of non-overlapping windows was computed separately for the 4 broiler lines, 

corrected for heterozygosity (CEh). We used non-overlapping sliding windows of 100 consecutive 

SNP. The experimental design made use of two ‘independent’ lines of male and female  

populations, whose output could be overlaid. This approach helps improve the signal to noise ratio 

for identifying bona fide signatures of selection, against background noise emerging from 

population bottlenecks and other phenomena. 

 

RESULTS AND DISCUSSION 

Population clustering. Self-Self pairs (panel A) possess a GRM of close to 1, with deviations 

above 1 representing extent of inbreeding. GRM and NCD are both in agreement that the lines 

cluster by gender comparison (Panel B). Female-male line comparisons in blue are awarded a low 

similarity and high distance, whereas male-male and female-female line comparisons are more 

closely related. 
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Figure 1. GRM and NCD values for the 4 chicken lines with the various gender comparisons 

colour coded. 

 

Overall, there is a clear negative relationship between GRM and NCD because similarity (via 

correlation) is the inverse of distance (via NCD).  

Signatures of selection. The genomes of all 4 lines were characterised by a large number of 

small peaks and a much smaller number of larger peaks. These outlier regions have particularly 

strong population-level scores in these regions. They would be predicted to potentially play an 

important role in providing the genetic basis for the phenotypes that have been selected in those 

populations. We manually explored the outlier regions that were gender-specific.  

 

 
Figure 2. Compression efficiency (y-axis) of windows of 100 consecutive SNPs along the 

genome (x-axis) for the four chicken lines. Highlighted are the regions described in Table2. 
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Table 2. Regions captured by the compression efficiency of windows of 100 consecutive SNPs 
 

Lines Regions (Chr: 

Coordinates) 

Example Genes in region Total number of genes 

Female 1:186.4 Mb – 1:193.3 Mb  FOLH1, THRSP 62 

Female 10:16.7 Mb – 10:17.9 Mb GNRHR 37 

Male 1:53.4 Mb – 1:56.1 Mb IGF-1, MTERF 45 

Male 5:30.1 Mb – 5:32.4 Mb mir-1718, mir-3532 19 

Male 28:3.81 Mb – 28:4.44 Mb INSR, SIN3B, PEX11G 28 

 

In the two male lines the clear identification of two different regions containing serial components 

of a single functional pathway (IGF-1 and one of its cognate receptors INSR) is particularly 

intriguing. The male lines, unlike the female lines, have been selected for increased muscle mass. 

IGF-1 is a well characterised master regulator of muscle mass whose molecular structure is similar 

to insulin. It mediates the anabolic effect of Growth Hormone (Barton 2006). This functional 

pairing (IGF-1 and INSR) is unlikely to occur by chance as IGF-1 is one of only three proteins to 

bind the insulin receptor.  In an independent population of broiler chickens derived from Plymouth 

Rock and Cornish lines IGF-1 had also been identified as a signature of selection (Stainton et al. 

2015). In the female lines which have been selected for reproductive traits, we detected regions 

containing GNRHR (encoding the receptor for the reproductive hormone gonadotropin releasing 

hormone) and FOLH1 (that hydrolases the vitamin folate).  

Future work could fine map these genomic regions using a higher resolution (50 SNP) window, 

and sliding it one SNP at a time in an overlapping fashion to attempt to home in on the exact genes 

under selection. We have previously used this method to successfully home in on single genes 

across human populations, such as lactase persistence in northern Europeans and Masaai Kenyans 

(Hudson et al. 2014). The relationship matrices described in the first part of the manuscript could 

be ‘ground-truthed’ through estimation of genetic parameters, computation of missing heritability 

and calculation of phenotype accuracies for a phenotype of commercial interest in the broiler 

industry such as feed efficiency. 
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